Instrumental Variables Quantile Regression for Panel Data with Measurement Errors∗

نویسندگان

  • Antonio F. Galvao
  • Gabriel V. Montes-Rojas
چکیده

This paper develops an instrumental variables estimator for quantile regression in panel data with fixed effects. Asymptotic properties of the instrumental variables estimator are studied for large N and T when Na/T → 0, for some a > 0. Wald and Kolmogorov-Smirnov type tests for general linear restrictions are developed. The estimator is applied to the problem of measurement errors in variables, which induces endogeneity and, as a result, bias in the model. We derive an approximation to the bias in the quantile regression fixed effects estimator in the presence of measurement error and show its connection to similar effects in standard least squares models. Monte Carlo simulations are conducted to evaluate the finite sample properties of the estimator in terms of bias and root mean squared error. Finally, the methods are applied to a model of firm investment. The results show interesting heterogeneity in the Tobin’s q and cash flow sensitivities of investment. In both cases, the sensitivities are monotonically increasing along the quantiles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Instrumental Variables Regression with Measurement Errors and Multicollinearity in Instruments

In this paper we obtain a consistent estimator when there exist some measurement errors and multicollinearity in the instrumental variables in a two stage least square estimation of parameters. We investigate the asymptotic distribution of the proposed estimator and discuss its properties using some theoretical proofs and a simulation study. A real numerical application is also provided for mor...

متن کامل

Quantile Regression for Dynamic Panel Data with Fixed Effects

This paper studies estimation and inference in a quantile regression dynamic panel model with fixed effects. Panel data fixed effects estimators are typically biased in the presence of lagged dependent variables as regressors. To reduce the dynamic bias in the quantile regression fixed effects estimator I suggest the use of the instrumental variables quantile regression method of Chernozhukov a...

متن کامل

Quantile Regression for Dynamic Panel Data

This paper studies estimation and inference in a quantile regression dynamic panel model with fixed effects. Panel data fixed effects estimators are typically biased in the presence of lagged dependent variables as regressors. To reduce the dynamic bias in the quantile regression panel data model I develop an instrumental variables approach that employs lagged regressors as instruments. I show ...

متن کامل

A quantile regression approach for estimating panel data models using instrumental variables

Article history: Received 7 August 2008 Received in revised form 23 April 2009 Accepted 28 April 2009 Available online 5 May 2009

متن کامل

Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data

‎Dynamic panel data models include the important part of medicine‎, ‎social and economic studies‎. ‎Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models‎. ‎The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance‎. ‎Recently‎, ‎quantile regression to analyze dynamic pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009